Limit Laws for Sums of Functions of Subtrees of Random Binary Search Trees
نویسنده
چکیده
We consider sums of functions of subtrees of a random binary search tree, and obtain general laws of large numbers and central limit theorems. These sums correspond to random recurrences of the quicksort type, Xn L = XIn+X ′ n−1−In+Yn, n ≥ 1, where In is uniformly distributed on {0, 1, . . . , n− 1}, Yn is a given random variable, Xk L = X ′ k for all k, and given In, XIn and X ′ n−1−In are independent. Conditions are derived such that (Xn−μn)/σ √ n L → N (0, 1), the normal distribution, for some finite constants μ and σ.
منابع مشابه
Applications of Stein’s Method in the Analysis of Random Binary Search Trees
Under certain conditions, sums of functions of subtrees of a random binary search tree are asymptotically normal. We show how Stein’s method can be applied to study these random trees, and survey methods for obtaining limit laws for such functions of subtrees.
متن کاملLimit laws for functions of fringe trees for binary search trees and random recursive trees
We prove general limit theorems for sums of functions of subtrees of (random) binary search trees and random recursive trees. The proofs use a new version of a representation by Devroye, and Stein’s method for both normal and Poisson approximation together with certain couplings. As a consequence, we give simple new proofs of the fact that the number of fringe trees of size k = kn in the binary...
متن کاملUsing Stein’s Method to Show Poisson and Normal Limit Laws for Fringe Subtrees
We consider sums of functions of fringe subtrees of binary search trees and random recursive trees (of total size n). The use of Stein’s method and certain couplings allow provision of simple proofs showing that in both of these trees, the number of fringe subtrees of size k < n, where k → ∞, can be approximated by a Poisson distribution. Combining these results and another version of Stein’s m...
متن کاملMultivariate Normal Limit Laws for the Numbers of Fringe Subtrees in m-ary Search Trees and Preferential Attachment Trees
We study fringe subtrees of random m-ary search trees and of preferential attachment trees, by putting them in the context of generalised Pólya urns. In particular we show that for the random m-ary search trees with m ≤ 26 and for the linear preferential attachment trees, the number of fringe subtrees that are isomorphic to an arbitrary fixed tree T converges to a normal distribution; more gene...
متن کاملLimit Theorems for Subtree Size Profiles of Increasing Trees
Simple families of increasing trees have been introduced by Bergeron, Flajolet and Salvy. They include random binary search trees, random recursive trees and random plane-oriented recursive trees (PORTs) as important special cases. In this paper, we investigate the number of subtrees of size k on the fringe of some classes of increasing trees, namely generalized PORTs and d-ary increasing trees...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Comput.
دوره 32 شماره
صفحات -
تاریخ انتشار 2002